Lesson no.44

Interfacing with High level languages

Calling Conventions

To interface an assembly routine with a high level language program means to be able to call functions back and forth. And to be able to do so requires knowledge of certain behavior of the HLL when calling functions. This behavior of calling functions is called the calling conventions of the language. Two prevalent calling conventions are the C calling convention and the Pascal calling convention.

What is the naming convention
C prepends an underscore to every function or variable name while Pascal translates the name to all uppercase. C++ has a weird name mangling scheme that is compiler dependent. To avoid it C++ can be forced to use C style naming with extern “C” directive.
How are parameters passed to the routine
In C parameters are pushed in reverse order with the rightmost being pushed first. While in Pascal they are pushed in proper order with the leftmost being pushed first.
Which registers must be preserved
Both standards preserve EBX, ESI, EDI, EBP, ESP, DS, ES, and SS.
Which registers are used as scratch
Both standards do not preserve or gurantee the value of EAX, ECX, EDX, FS, GS, EFLAGS, and any other registers.
Which register holds the return value
Both C and Pascal return upto 32bit large values in EAX and upto 64bit large values in EDX:EAX.
Who is responsible for removing the parameters

In C the caller removes the parameter while in Pascal the callee removes them. The C scheme has reasons pertaining to its provision for variable number of arguments.
1.1. Calling C from Assembly

For example we take a function divide declared in C as follows.

int divide(int dividend, int divisor);

To call this function from assembly we have to write.

push dword [mydivisor]

push dword [mydividend]

call _divide

add esp, 8

; EAX holds the answer

Observe the order of parameters according to the C calling conventions and observe that the caller cleared the stack. Now take another example of a function written in C as follows.

void swap(int* p1, int* p2)

{

int temp = *p1;

*p1 = *p2;

*p2 = temp;

}

To call it from assembly we have to write this.

[section .text]

extern _swap

x:

dd 4

y:

dd 7

push dword y

push dword x

call _swap
; will only retain the specified registers

add esp, 8

Observe how pointers were initialized appropriately. The above function swap was converted into assembly by the gcc compiler as follows.

; swap generated by gcc with no optimizations (converted to Intel syntax)

; 15 instructions AND 13 memory accesses

_swap:

push ebp

mov
ebp, esp

sub
esp, 4

; space created for temp

mov eax, [ebp+8]

mov eax, [eax]

mov
[ebp-4], eax

; temp = *p1

mov edx, [ebp+8]

mov eax, [ebp+12]

mov eax, [eax]

mov
[edx], eax

; *p1 = *p2

mov edx, [ebp+12]

mov eax, [ebp-4]

mov [edx], eax

; *p2 = temp

leave
;;;;; EQUIVALENT TO mov esp, ebp AND pop ebp ;;;;;

ret

If we turn on optimizations the same function is compiled into the following code.

; generated with full optimization by gcc compiler

; 12 instructions AND 11 memory accesses

_swap:

push
ebp

mov
ebp, esp

push
ebx

mov
edx, [ebp+8]

mov
ecx, [ebp+12]

mov
ebx, [edx]

mov
eax, [ecx]

mov
[edx], eax

mov
[ecx], ebx

pop
ebx

pop
ebp

ret
1.2. Calling Assembly from C

We now write a hand optimized version in assembly. Our version is only 6 instructions and 6 memory accesses.

	
	Example 16.1

	001

002
003

004

005

006

007

008
	[section .text]

global _swap

_swap: mov ecx,[esp+4]
; copy parameter p1 to ecx

 mov edx,[esp+8]
; copy parameter p2 to edx

 mov eax,[ecx]
; copy *p1 into eax

 xchg eax,[edx]
; exchange eax with *p2

 mov [ecx],eax
; copy eax into *p1

 ret

; return from this function

We assemble the above program with the following command.

· nasm –f win32 swap.asm
This produces a swap.obj file. The format directive told the assembler that it is to be linked with a 32bit Windows executable. The linking process involves resolving imported symbols of one object files with export symbols of another. In NASM an imported symbol is declared with the extern directive while and exported symbol is declared with the global directive.

We write the following program in C to call this assembly routine. We should have provided the swap.obj file to the C linker otherwise an unresolved external symbol error will come.

	
	Example 16.1

	001

002
003

004

005

006

007

008

009

010

011

012

013
	#include <stdio.h>

void swap(int* p1, int* p2);

int main()

{

 int a = 10, b = 20;

 printf("a=%d b=%d\n", a, b);

 swap(&a, &b);

 printf("a=%d b=%d\n", a, b);

 system("PAUSE");

 return 0;

}

Exercises

1. Write a traverse function in assembly, which takes an array, the number of elements in the array and the address of another function to be called for each member of the array. Call the function from a C program.

2. Make the linked list functions make in Exercise 5.XX available to C programs using the following declarations.

struct node {

int data;

struct node* next;
};
void init(void);
struct node* createlist(void);
void insertafter(struct node*, int);
void deleteafter(struct node*);
void deletelist(struct node*);
3. Add two functions to the above program implemented in C. The function “printnode” should print the data in the passed node using printf, while “countfree” should count the number of free nodes by traversing the free list starting from the node address stored in firstfree.
void printnode(struct node*);
void countfree(void);
4. Add the function “printlist” to the above program and implement in assembly. This function should traverse the list whose head is passed as parameter and for each node containing data (head is dummy and doesn’t contain data) calls the C function printnode to actually print the contained data.
void printlist(struct node*);

5. Modify the createlist and deletelist functions in the above program to increment and decrement an integer variable “listcount” declared in C to maintain a count of linked lists present.
